α -clustering at the surface of heavy nuclei ¹¹²⁻¹²⁴Sn probed with $(p, p\alpha)$ reaction

Z. H. Yang^{1,2}, J. Tanaka^{3,4}, S. Typel^{3,4}, T. Aumann^{3,4}, J. Zenihiro¹, S. Adachi¹, S. Bai⁵, P. v. Beek³,

D. Beaumel⁶, Y. Fujikawa⁷, J. Han⁵, S. Heil³, S. Huang⁵, A. Inoue¹, Y. Jiang⁵, M. Knösel³, N. Kobayashi¹,

Y. Kubota², W. Liu⁵, J. Lou⁵, Y. Maeda⁸, Y. Matsuda⁹, K. Miki¹⁰, S. Nakamura¹, K. Ogata^{1,11}, V. Panin¹,

H. Scheit³, F. Schindler³, P. Schrock¹², D. Symochko³, A. Tamii¹, T. Uesaka², V. Wagner³, K. Yoshida¹³

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

²RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan

³Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

⁴GSI Helmholtz Center for Heavy Ion Research GmbH, 64291 Darmstadt, Germany

⁵State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing

100871, China

⁶Institut de Physique Nucleáire Orsay, 15 Rue, Georges, Clemenceau 91400 Orsay, France

⁷Department of Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan

⁸Faculty of Engineering, University of Miyazaki, 1-1 Gakuen, Kibanadai-nishi, Miyazaki 889-2192, Japan

⁹Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

¹⁰Department of Physics, Tohoku University, Sendai 980-8578, Japan

¹¹Department of Physics, Osaka University, Osaka 558-8585, Japan

¹²Center for Nuclear Study, The University of Tokyo, 2-1 Hirosawa, Wako 351-0198, Japan

¹³Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

Alpha decay has been known since the very early years of nuclear physics, which is generally described as the quantum tunneling of preformed alpha particles, a semi-classical picture initiated by George Gamow in 1920s [1]. Despite the essential role in understanding the alpha decay process, there is so far no unambiguous experimental evidence reported for the existence of α clusters in heavy nuclei [2, 3]. Recent generalized relativistic density functional (gRDF) calculations, with cluster formation taken into account, suggest that α -clustering occurs at the low-density surface of heavy nuclei, which could explain the origin of α particles in the alpha decay process [4, 5]. According to gRDF calculations, there is close correlation between surface α -clustering and neutron-skin thickness in heavy nuclei and as a consequence the α -clustering strength in tin isotopes decreases monotonically with increase of the neutron number [5]. If confirmed, this will further impact our understanding of the density dependence of the symmetry energy in the nuclear equation of state [4, 5].

The quasi-free $(p, p\alpha)$ reaction has proven to be the most direct probe for α -clustering in the ground state of nuclei [6, 7]. By detecting proton and alpha particle in coincidence, the $(p, p\alpha)$ reaction cross sections can be determined, which is directly related to the α -clustering strength (namely, possibility to find α clusters) in the target. This kind of measurements have been widely used to study α -clustering for decades in light nuclei (e.g. ⁹Be and ¹²C), and has been particularly highlighted in recent years thanks to the significant progress in reaction theories by incorporating microscopic optical potentials and microscopic wave functions of the alpha cluster [6, 8, 9].

We have carried out direct measurements on α -clustering strength at the surface of tin isotopes ^{112,116,120,124}Sn by using quasi-free $(p, p\alpha)$ reaction at 392 MeV at the WS beam line of RCNP. The scattered protons and α particles after the $(p, p\alpha)$ reaction were detected in coincidence by the Grand Raiden and LAS spectrometers, which allows to reconstruct the separation energy and intrinsic momentum of the knocked out α particles from the conservation of energy and momentum. The experimental setup was designed according to the quasi-free scattering kinematics of the proton off a preformed alpha particle and optimized to achieve detection of lowenergy α particles (down to ~50 MeV) and high signal-to-noise ratio. In particular, we have optimized the working gas and operation high voltage so that the VDC of LAS spectrometer is insensitive to Z = 1 particles.

We started the measurement with $^{nat}\text{Li}(p,p\alpha)$ reaction as validation of our detector setting and analysis method. The spectrum of the timing difference between protons in Grand Raiden and coincident α particles in LAS is presented in Figure 1 (left panel) for ^{nat}Li target, where significant enhancement within the $p - \alpha$ "true coincidence" time window corresponding to quasi-free $(p, p\alpha)$ reactions on $^{6,7}\text{Li}$ is evident. In the right panel, the α separation energy (E_{sep}) spectrum for "true coincidence" events (red line) and "random coincidence" events (blue line) were reconstructed from the momenta of proton and alpha particles. Obviously, the E_{sep} spectrum for "true coincidence" is dominated by a peak located at ~2.4 MeV, in good agreement with the realistic separation energy of α particles in ⁷Li ($E_{sep} = 2.47$ MeV). The measured E_{sep} spectrum for quasifree $(p, p\alpha)$ reaction can then be deduced by subtracting the "random coincidence" background, after proper normalization, from the "true coincidence" spectrum. To conclude, the present setup works well for $(p, p\alpha)$ measurements.

In Figure 2, we presented the E_{sep} spectra for ¹¹²Sn with the same analysis method as was done for ^{nat}Li target. As shown in the right panel, the physical E_{sep} spectrum, after background subtraction, exhibits a

prominent peak at 2 MeV, which is consistent with the expected α -particle separation energy for ¹¹²Sn (1.83 MeV, calculated from the masses). Similar analysis has also been done for the other tin isotopes ^{116,120,124}Sn, and the expected E_{sep} peak was also clearly observed for each of them. The E_{sep} spectra were then used to deduce the corresponding $(p, p\alpha)$ cross sections for each isotope, and gradual decrease of the obtained cross sections from ¹¹²Sn to ¹²⁴Sn was found from the preliminary analysis, which is consistent with the gRDF predictions by S. Typel [5].

Figure 1: The measured spectra for $^{nat}\text{Li}(p, p\alpha)$ reaction. (left) the timing difference spectrum between protons and coincident alpha particles. (right) the alpha separation energy (E_{sep}) spectrum for "true coincidence" events (red line) and "random coincidence" events (blue line).

Figure 2: The measured E_{sep} spectra for ¹¹²Sn. On the right panel, the "random coincidence" background has been subtracted.

References

- [1] G. Gamow, Z. Phys. **51**, 204 (1928).
- [2] G. Röpke, Phys. Rev. C **90**, 034304 (2014).
- [3] C. Qi, Prog. Part. Nucl. Phys. **105**, 214 (2019).
- [4] S. Typel *et al.*, Phys. Rev. C **81**, 015803 (2010).
- [5] S. Typel, Phys. Rev. C 89, 064321 (2014).
- [6] P. G. Roos et al., Phys. Rev. C 15, 69 (1977).
- [7] A. Nadasen *et al.*, Phys. Rev. C 40, 1130 (1989).
- [8] K. Yoshida et al., Phys. Rev. C 94, 044604 (2016).
- [9] M. Lyu *et al.*, Phys. Rev. C **97**, 044612 (2018).